Unraveling the Mysteries of Viscous Fingering in Reacting Flows. 反応流における粘性フィンガリングの謎を解明

Chemical reactions in flowing fluids can change the flow dynamics. This discovery helps us understand how different gel strengths can control fluid flow.
流体内の化学反応が流れのダイナミクスを驚くべき方法で変えることを発見しました。この発見は、異なるゲルの強度が流体の流れをどのように制御できるかを理解するのに役立ちます。

Harnessing Heat: How Fluidized Bed Reactors Can Store Renewable Energy. 熱を活用する: 流動層反応器が再生可能エネルギーを蓄える方法

A new model to improve fluidized bed reactors for storing renewable energy. This model helps manage heat and mass transport, making it better at handling fluctuating heat supplies from solar and wind power. 再生可能エネルギーを蓄えるための流動層反応器の効率を改善する新しいモデルを開発しました。このモデルは、熱と物質の輸送を管理し、太陽光や風力などの変動する熱供給に対処します。

Balancing Power Supply with Water Pumps in Japan 日本における水ポンプを用いた電力供給のバランス調整

Water pumps can reduce surplus power, lower fossil fuel costs, and decrease the curtailment of renewable energy output. ポンプの運転スケジュールを調整することで、余剰電力を削減し、化石燃料コストを削減し、再生可能エネルギーの出力抑制を減少させることが示されました。

高エネルギー「キャパシタ」、量子ドット階層的ナノ孔構造 Quantum Dot – Nanopore Structure for High-Energy Supercapacitors

量子ドットを使って、新しいタイプのスーパーキャパシタを作り出しました。この新しいデバイスは、とても小さな空間にたくさんのエネルギーを貯めることができ、将来的にはより優 a new type of supercapacitor using quantum dots.

シリコンで光加熱!?:プラズモンデバイスへの新しいアプローチ How to heat up silicon with light: a new approach for plasmonic devices

この種のヒーターは,光を熱に変換する効率が非常に高く,従来の設計よりも優れていることも分かった.this kind of heater is very good at turning light into heat, much better than previous designs.

耐熱担体:クリーン水素生産の鍵となる技術 Heat-Resistant Carriers: A Key Technology for Clean Hydrogen Production

桜井研究室は新たなタイプの耐熱担体を開発しました。この担体は、独自の技術によって空孔と呼ばれる小さな穴がいくつも開けられているのが特徴です。空孔は熱を拡散させる効果があるため、担体内部の温度上昇を抑制し、高温耐性を向上させることができます。Sakurai Lab have crafted a new breed of carriers, clad in a heat-resistant alloy and equipped with a secret weapon: “pore widening treatment.” This ingenious process transforms their internal structure, conjuring a sponge-like network that breathes fire. Think of it as building microscopic heat shields within each carrier!

Stem cutting delivers particles to plants! 茎切断による植物への微粒子輸送、新たな方法

ナノ粒子だけでなくサブミクロン粒子も輸送可能 🍅 トマトだけでなく他の食物作物にも適用可能 Stem Cutting: A Novel Route for Delivering Sub- and Micrometer-Scale Particles to Plants= This method bypasses size (40nm) limitations and holds promise for diverse applications in agriculture and biotechnology. 🌱 Published in Plant Physiology and Biochemistry (Federation >>> More …