高エネルギー「キャパシタ」、量子ドット階層的ナノ孔構造 Quantum Dot – Nanopore Structure for High-Energy Supercapacitors

エネルギー貯蔵技術における発見 Breakthrough in Energy Storage Technology


化学物理工学科のビスリ研究室と共同研究者らがエネルギー貯蔵に関する重要な発見をしました!量子ドットを使って、新しいタイプのスーパーキャパシタを作り出しました。この新しいデバイスは、とても小さな空間にたくさんのエネルギーを貯めることができ、将来的にはより優れたバッテリーを作るのに役立つかもしれません。Researchers from Bisri Lab (TUAT) and their collaborators have made a discovery in the area of energy storage! They’ve created a new type of supercapacitor using quantum dots. This new device can store a lot of energy in a very small space, which could be really useful for making better batteries in the future.


この研究の特徴は? What’s special about this research?

  • 非常に小さな粒子である量子ドットを使って、たくさんの小さな空間を持つ構造を作り出しています。It uses quantum dots, which are incredibly small particles, to create a structure with lots of tiny spaces.
  • この構造により、これまでの設計よりも多くのエネルギーを貯めることができます。This structure allows the device to store more energy than previous designs.
  • この新しいスーパーキャパシタは、とても速く充電と放電ができます。The new supercapacitor can charge and discharge very quickly.
  • 余分な材料を必要としないため、より単純で、製造コストも抑えられます。
    It doesn’t need any extra materials to work, making it simpler and potentially cheaper to produce.

この発見により、電気自動車のようなデバイス用に、より小型で強力なバッテリーが作れるようになるかもしれません。This discovery could lead to smaller, more powerful batteries for electric cars and other devices.

Abstract Image

Original article:

High Volumetric Energy Density Supercapacitor of Additive-Free Quantum Dot Hierarchical Nanopore Structure (From Bisri Lab, TUAT) ACS Applied Materials & Interfaces (American Chemical Society)

https://doi.org/10.1021/acsami.4c02517

The high surface-area-to-volume ratio of colloidal quantum dots (QDs) positions them as promising materials for high-performance supercapacitor electrodes. However, the challenge lies in achieving a highly accessible surface area, while maintaining good electrical conductivity. An efficient supercapacitor demands a dense yet highly porous structure that facilitates efficient ion–surface interactions and supports fast charge mobility. Here we demonstrate the successful development of additive-free ultrahigh energy density electric double-layer capacitors based on quantum dot hierarchical nanopore (QDHN) structures. Lead sulfide QDs are assembled into QDHN structures that strike a balance between electrical conductivity and efficient ion diffusion by employing meticulous control over inter-QD distances without any additives. Using ionic liquid as the electrolyte, the high-voltage ultrathin-film microsupercapacitors achieve a remarkable combination of volumetric energy density (95.6 mWh/cm^3) and power density (13.5 W/cm^3). This achievement is attributed to the intrinsic capability of QDHN structures to accumulate charge carriers efficiently. These findings introduce innovative concepts for leveraging colloidal nanomaterials in the advancement of high-performance energy storage devices.

KEYWORDS: supercapacitors colloidal quantum dots hierarchical nanopores volumetric energy density electric double layer