Interview) 実験好き少女から量子物質の研究者へ(香取浩子先生)From Experiment-Loving Student to Quantum Materials Researcher (Prof. Hiroko Katori)

楽しみながら新たな物質を目指す|東京農工大学 先生大図鑑 (note.com) 【先生大図鑑】磁石の力で未来を拓く—実験好き少女から量子物質の研究者へ(香取浩子先生) 要約 「鉄が磁石にくっつくのは当たり前」。でも、熱湯につけるとくっつかなくなることを知っていますか? 今回のインタビューは、化学物理工学科の香取浩子先生。「量子物質(Quantum Materials)」、特に原子レベルの磁石(スピン)の配列を操ることで、高校物理では説明できない不思議な性質を持つ新しい材料を生み出す研究をされています。 物理が好きになったきっかけは、なんと「高校の先生がよく間違えたから(!?)」。自分で教科書を読み解き、実験に没頭した少女時代から、研究者の道へ進んだユニークなエピソードは必見です。「物理は暗記科目ではなく、夢いっぱいの開拓分野」と語る先生の言葉に、物理学へのイメージが変わるかもしれません。 [インタビュー全文はこちら] Unlocking the Future with Magnetism: From Experiment-Loving Student to Quantum Materials Researcher (Prof. Hiroko Katori) Summary We all know iron sticks to magnets. But did you know it stops sticking if >>> More …

グリセリン変換を革新する新たなポリマー触媒Revolutionizing Glycerol Conversion with New Polymeric Catalyst

当学科の複数の研究グループ(徳山研究室、寺田研究室、大橋研究室)は、poly(AMPS)-g-PUSと呼ばれる新しいポリマー触媒を開発しました。この触媒は、植物や油の中に含まれるグリセリンという物質を、燃料や医薬品に使われるソルケタールという化学物質に変えるのに役立ちます。この触媒は、大気圧プラズマ誘導グラフト重合と呼ばれる特別な技術を使って作られます。この触媒はよく働き、何十回も使っても効果が落ちません。これは、poly(AMPS)-g-PUSがグリセリンからソルケタールを作るために有望な触媒であることを示唆しています。 https://doi.org/10.1016/j.reactfunctpolym.2023.105697 Several research groups (Tokuyama, Terada, and Ohashi Labs) in our department have developed a new polymeric catalyst called poly(AMPS)-g-PUS. This catalyst can help convert glycerol, a substance found in plants and oils, into solketal, a chemical used in >>> More …

単一コロイド量子ドットで電気伝導の評価と制御 Single Quantum Dot Breakthrough: Electrical Conduction Achieved (Nature Commun., 2023)

1個の半導体コロイド量子ドットを用いた単一電子トランジスタで室温動作を実現 d a technique called scanning tunneling microscopy to create a single-electron transistor (SET) with a single colloidal quantum dot at the junction between two metal electrodes.

第三世代キタエフ物質 Third-generation Kitaev materials

原口祐哉助教は、第三世代キタエフ物質のテーマで2023年よりJSTさきがけ研究者に選ばれました。 さきがけ (jst.go.jp) 戦略目標:「元素戦略を基軸とした未踏の多元素・複合・準安定物質探査空間の開拓」研究領域:「物質探索空間の拡大による未来材料の創製」 Dr. Yuya Haraguchi was selected as one of the JST “Sakigake” PRESTO Researchers in 2023. 第三世代キタエフ材料は、トポロジカル量子コンピューティングの実現に向けて期待されている新材料です。キタエフ模型は、量子コンピューティングの理論的枠組みである量子アニーリングを実現するための最有力な候補の1つとされています。第三世代キタエフ材料は、キタエフ模型を実現するための材料として、従来の材料よりも優れた性能が期待されています。Third-generation Kitaev materials are promising new materials for the realization of topological quantum computing. The Kitaev model is one of the >>> More …

環境に優しい新製法でグラフェンの合成:セルロースの糖化触媒を製造する。Graphene made easy: A new eco-friendly method opens the door to converting cellulose into sugars

This new method for making graphene is a promising step towards the development of more sustainable and efficient ways to produce this important material. このグラフェン製造の新方法は、この重要な材料をより持続可能かつ効率的に生産するための有望な一歩です。

有機太陽電池の秘密を解き明かす Unveiling the Secrets of Organic Photovoltaic Cells (ACS Appl. Energy Mater.)

black solar panel on brown roof tiles

フェーズプレート走査透過型電子顕微鏡P-STEMが有機ハイブリッド材料の分析に大きな可能性を秘めている。The potential of P-STEM (phase plate scanning transmission electron microscopy) for analyzing organic hybrid materials (bulk heterojunction in organic photovoltaic cells).

A new process. Making fibers with soots for purifying water by solar energy. すすで繊維を作るプロセス:太陽熱で水を浄化する

Solar distillation, a promising technique for water purification and desalination, requires photothermal materials to efficiently convert solar energy into heat. 太陽光エネルギーを熱エネルギーに変換して水を蒸発させる太陽蒸留は、水の浄化と淡水化に有望な技術である。太陽光を効率的に熱エネルギーに変換するためには、光熱変換材料が必要である。

7/19 Seminar. 2D Nanomaterials for High Performance Water Treatment & Energy Storage Applications 高性能水処理とエネルギー貯蔵用途のための2Dナノ材料

Dr. Ahmed S. G. Khalil エジプト日本科学技術大. Professor, Egypt-Japan University of Science & Technology.

“Precise Engineering of 2D Nanomaterials and Nanocomposites for High Performance Water treatment and Energy Storage Applications”